23 research outputs found

    Hybrid Silicon-Photonic Circuits with Second-Order Optical Nonlinearities

    Get PDF
    Die integrierte Optik ermöglicht die Miniaturisierung diskreter photonischer oder elektro-optischer (EO) Komponenten und die Kombination dieser Bauelemente in komplexen photonischen integrierten Schaltungen (engl. photonic integrated circuit, PIC) auf kompakten Mikrochips. Die Silizium-Photonik (SiP) ist eine sehr attraktive Plattform für die photonische Integration, da sie ausgereifte Herstellungsprozesse aus der Mikroelektronik nutzen kann. Damit eröffnet die Silizium-Photonik die Möglichkeit zur kostengünstigen Massenproduktion von photonischen Chips mit hoher Ausbeute und Reproduzierbarkeit. Darüber hinaus erlaubt der große Brechungsindexkontrast zwischen dem als Wellenleiterkern dienendem Silizium (Si) und dem als Mantelmaterial verwendeten Siliziumdioxid die Herstellung von Wellenleitern mit kleinen Querschnitten und kleinen Krümmungsradien, was die Integrationsdichte im Vergleich zu anderen Materialplattformen erhöht. Die Silizium-Photonik hat jedoch einen entscheidenden Nachteil: Aufgrund seines inversionssymmetrischen Kristallgitters besitzt Silizium keine Nichtlinearität zweiter Ordnung. Folglich sind Bauelemente wie optische Frequenzkonverter, optische Logikgatter, verschränkte Photonenquellen und vor allem elektro-optische Modulatoren, welche auf dem Pockels-Effekt basieren, auf der SiP-Plattform nicht ohne Weiteres realisierbar. Die hybride Integration von Silzium-Nanowellenleitern mit anderen Materialien, die eine Nichtlinearität zweiter Ordnung aufweisen, ist daher für die Erweiterung des Portfolios von SiP-Bauelementen von entscheidender Bedeutung. In dieser Arbeit werden zwei Ansätze für die hybride Integration in SiP-Schaltungen untersucht. Der erste Ansatz stütz sich auf hocheffiziente organische EO Materialien, die mit siliziumphotonischen Wellenleiterstrukturen in einem Back-End-of-Line-Prozess kombiniert werden, um sogenannte Silicon-Organic Hybrid (SOH) EO Modulatoren zu realisieren. In dieser Arbeit werden SOH-Modulatoren demonstriert, die neue Rekorde in Bezug auf Modulationseffizienz, optische Einfügungsdämpfung und demonstrierte Datenrate definieren. Darüber hinaus wird die thermische Langzeitstabilität dieser Bauelemente bei 85 °C validiert. Der zweite Ansatz beruht auf neuartigen anorganischen Nanolaminat-Dünnfilmen, die durch Atomlagenabscheidung (ALD) gewachsen werden. Aufgrund des frühen Forschungsstadiums wurden diese Materialien nicht direkt auf SiP-Chips, sondern auf Glassubstraten gewachsen und durch die Erzeugung der zweiten Harmonischen (SHG) charakterisiert. In dieser Arbeit werden SHG-Charakterisierungstechniken für Nanolaminate untersucht und ein neues Nanolaminat vorgestellt. Perspektivisch könnte ALD allerdings auch für die Beschichtung von SiP-Chips verwendet werden. Das konforme ALD-Wachstum bietet sich hierbei an, um präzise definierte Schichtfolgen auch auf komplexen Wellenleiterstrukturen mit hoher Reproduzierbarkeit abzuscheiden. Diese beiden Ansätze werden in der vorliegenden Arbeit näher beschrieben. Kapitel 1 gibt eine Einführung in die integrierte Optik und erläutert die Notwendigkeit der Hybridintegration von optisch-nichtlinearen Materialien zweiter Ordnung in SiP-Schaltungen. Kapitel 2 fasst den theoretischen Hintergrund, führt die für diese Arbeit relevanten Aspekte der nichtlinearen Optik ein und gibt einen Überblick über verschiedene Klassen von nichtlinearen Materialien zweiter Ordnung. Darüber hinaus wird der Stand der Technik von Mach-Zehnder-Modulatoren auf der SiP-Plattform vorgestellt. In Kapitel 3 wird die sehr hohe Modulationseffizienz von SOH-Modulatoren demonstriert. Dabei wird ein Mach-Zehnder-Modulator diskutiert, bei dem das Produkt aus π-Spannung und Länge nur 0,32 Vmm beträgt. Im Vergleich zu modernsten SiP-Modulatoren stellt dieser Wert eine Verbesserung um mehr als eine Größenordnung dar. Diese hohe Effizienz ermöglicht eine optische Signalerzeugung mit einer Datenrate von 40 Gbit/s unter Verwendung sehr kleiner Peak-to-Peak Treiberspannungen von nur 140 mVpp_{\rm{pp}}. Kapitel 4 stellt einen kompakten SOH-Modulator mit einer optischen Dämpfung des Phasenschiebers von unter 1 dB vor – dies entspricht dem niedrigsten Wert der jemals für einen ultra-schnellen SiP-Modulator veröffentlicht wurde. Der Nutzen dieses Bauteils für schnelle und effiziente optische Datenübertragung wird in einem Experiment demonstriert, bei dem vierstufige Pulsamplitudenmodulations-Signale (PAM4) bei 100 GBd erzeugt werden. Die hierfür verwendeten Treiberspannungen sind kompatibel mit typischen Spannungspegeln, die von energieeffizienten und hochgradig skalierbaren Complementary Metal-Oxide-Semiconductor-(CMOS­)Bauteilen erzeugt werden können. Kapitel 5 demonstriert die thermische Langzeitstabilität von SOH-Modulatoren gemäß den Telcordia-Normen für die Lagerung bei hohen Temperaturen. Die Bauelemente werden bei 85 °C für insgesamt 2700 h gelagert, und es zeigt sich, dass die π-Spannung nach einem schnellen anfänglichen Anstieg auf ein konstantes langzeitstabiles Niveau konvergiert. Weiterhin wird gezeigt, dass die Lagerung bei 85 °C keinen negativen Einfluss auf die Leistungsfähigkeit der Bauteile bezüglich der optischen Datenübertragung hat. Dazu wurde eine optische Datenübertragung mit einem SOH-Bauteil durchgeführt, das zuvor für 2700 h bei 85 °C gelagert wurde. Mit dieser Demonstration wird eines der letzten verbleibenden Hindernisse auf dem Weg zum technischen Einsatz von SOH-Bauteilen adressiert: Die Stabilität der zugrundeliegenden organischen Materialien. In Kapitel 6 werden zwei verschiedene Techniken zur Messung von SHG von anorganischen Nanolaminaten und zur Bestimmung der zugehörigen Elemente des χ(2)\chi^{(2)}-Tensors untersucht. Die Vor- und Nachteile der beiden Methoden werden verglichen und die Quellen für Messfehler identifiziert. Kapitel 7 stellt ein neuartiges binäres Nanolaminatmaterial vor, das auf abwechselnden Schichten aus Zinkoxid und Aluminiumoxid basiert. Die ermittelte Nichtlinearität zweiter Ordnung ist mehr als dreimal so groß wie bei zuvor veröffentlichten ternären Nanolaminaten. Kapitel 8 fasst die Themen dieser Arbeit zusammen und gibt einen Ausblick auf zukünftige Arbeiten zu SOH-Modulatoren und Nanolaminat-Dünnfilmen

    Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices

    Get PDF
    We demonstrate the generation of higher-order modulation formats using silicon-based inphase/quadrature (IQ) modulators at symbol rates of up to 100 GBd. Our devices exploit the advantages of silicon-organic hybrid (SOH) integration, which combines silicon-on-insulator waveguides with highly efficient organic electro-optic (EO) cladding materials to enable small drive voltages and sub-millimeter device lengths. In our experiments, we use an SOH IQ modulator with a {\pi}-voltage of 1.6 V to generate 100 GBd 16QAM signals. This is the first time that the 100 GBd mark is reached with an IQ modulator realized on a semiconductor substrate, leading to a single-polarization line rate of 400 Gbit/s. The peak-to-peak drive voltages amount to 1.5 Vpp, corresponding to an electrical energy dissipation in the modulator of only 25 fJ/bit

    Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation

    Get PDF
    Silicon-organic hybrid (SOH) electro-optic (EO) modulators combine small footprint with low operating voltage and hence low power dissipation, thus lending themselves to on-chip integration of large-scale device arrays. Here we demonstrate an electrical packaging concept that enables high-density radio-frequency (RF) interfaces between on-chip SOH devices and external circuits. The concept combines high-resolution Al2O3\mathrm{Al_2O_3} printed-circuit boards with technically simple metal wire bonds and is amenable to packaging of device arrays with small on-chip bond pad pitches. In a set of experiments, we characterize the performance of the underlying RF building blocks and we demonstrate the viability of the overall concept by generation of high-speed optical communication signals. Achieving line rates (symbols rates) of 128 Gbit/s (64 GBd) using quadrature-phase-shiftkeying (QPSK) modulation and of 160 Gbit/s (40 GBd) using 16-state quadrature-amplitudemodulation (16QAM), we believe that our demonstration represents an important step in bringing SOH modulators from proof-of-concept experiments to deployment in commercial environments

    A verified equivalent-circuit model for slotwaveguide modulators

    Get PDF
    We formulate and experimentally validate an equivalent-circuit model based on distributed elements to describe the electric and electro-optic (EO) properties of travellingwave silicon-organic hybrid (SOH) slot-waveguide modulators. The model allows to reliably predict the small-signal EO frequency response of the modulators exploiting purely electrical measurements of the frequency-dependent RF transmission characteristics. We experimentally verify the validity of our model, and we formulate design guidelines for an optimum trade-off between optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and {\pi}-voltage of SOH slot-waveguide modulators

    Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s On-Off Keying

    Get PDF
    Electro-optic modulators for high-speed on-off keying (OOK) are key components of short- and mediumreach interconnects in data-center networks. Besides small footprint and cost-efficient large-scale production, small drive voltages and ultra-low power consumption are of paramount importance for such devices. Here we demonstrate that the concept of silicon-organic hybrid (SOH) integration is perfectly suited for meeting these challenges. The approach combines the unique processing advantages of large-scale silicon photonics with unrivalled electro-optic (EO) coefficients obtained by molecular engineering of organic materials. In our proof-of-concept experiments, we demonstrate generation and transmission of OOK signals with line rates of up to 100 Gbit/s using a 1.1 mm-long SOH Mach-Zehnder modulator (MZM) which features a {\pi}-voltage of only 0.9 V. This experiment represents not only the first demonstration of 100 Gbit/s OOK on the silicon photonic platform, but also leads to the lowest drive voltage and energy consumption ever demonstrated at this data rate for a semiconductor-based device. We support our experimental results by a theoretical analysis and show that the nonlinear transfer characteristic of the MZM can be exploited to overcome bandwidth limitations of the modulator and of the electric driver circuitry. The devices are fabricated in a commercial silicon photonics line and can hence be combined with the full portfolio of standard silicon photonic devices. We expect that high-speed power-efficient SOH modulators may have transformative impact on short-reach optical networks, enabling compact transceivers with unprecedented energy efficiency that will be at the heart of future Ethernet interfaces at Tbit/s data rates

    A verified equivalent-circuit model for slotwaveguide modulators

    Get PDF
    We formulate and experimentally validate an equivalent-circuit model based on distributed elements to describe the electric and electro-optic (EO) properties of travellingwave silicon-organic hybrid (SOH) slot-waveguide modulators. The model allows to reliably predict the small-signal EO frequency response of the modulators exploiting purely electrical measurements of the frequency-dependent RF transmission characteristics. We experimentally verify the validity of our model, and we formulate design guidelines for an optimum trade-off between optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and {\pi}-voltage of SOH slot-waveguide modulators

    Verified equivalent-circuit model for slot-waveguide modulators

    Get PDF
    We formulate and experimentally validate an equivalent-circuit model based on distributed elements to describe the electric and electro-optic (EO) properties of travelling-wave silicon-organic hybrid (SOH) slot-waveguide modulators. The model allows to reliably predict the small-signal EO frequency response of the modulators exploiting purely electrical measurements of the frequency-dependent RF transmission characteristics. We experimentally verify the validity of our model, and we formulate design guidelines for an optimum trade-off between optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and π-voltage of SOH slot-waveguide modulators
    corecore